
SLO-Power: SLO and Power-aware Elastic
Scaling for Web Services

Mehmet Savasci
University of Massachusetts Amherst

Amherst, USA
msavasci@cs.umass.edu

Abel Souza
University of Massachusetts Amherst

Amherst, USA
asouza@cs.umass.edu

Li Wu
University of Massachusetts Amherst

Amherst, USA
liwu@cs.umass.edu

David Irwin
University of Massachusetts Amherst

Amherst, USA
irwin@ecs.umass.edu

Ahmed Ali-Eldin
Chalmers University of Technology

Göteborg, Sweden
ahmed.hassan@chalmers.se

Prashant Shenoy
University of Massachusetts Amherst

Amherst, USA
shenoy@cs.umass.edu

Abstract—Managing the performance of online web services
in cloud data centers while optimizing resource allocation and
power consumption is a multifaceted challenge. Often, resource
and power management techniques, such as elastic scaling and
power capping, are handled independently, leading to conflicts
and sub-optimal power-performance trade-offs. To tackle this
issue, we introduce SLO-Power, a system that coordinates
the resource and power scaling techniques to achieve power
savings while adhering to service level objectives (SLOs), such
as tail latency constraints. Our approach employs a combination
of analytic queuing models and feedback-driven techniques to
jointly allocate resources and power to cloud applications in an
SLO and power-aware manner. We implement a prototype of our
system and evaluate it using realistic workloads to demonstrate its
ability to harmonize elastic and power scaling, enabling enhanced
resource utilization and reduced power consumption while en-
suring the application performance. Our findings indicate that
SLO-Power achieves exceptional power and resource efficiency,
approaching near-optimal power-efficiency levels at 90%, all
while preventing SLO violations. Furthermore, compared to
state-of-the-art solutions, SLO-Power demonstrates lower P95
latency, accompanied by a 12% reduction in resource usage.

Index Terms—Elastic Scaling, Power Capping, Web Services,
Application SLO.

I. INTRODUCTION

Today’s cloud platforms are a popular choice for hosting
online web services in domains such as banking, news and
entertainment, e-commerce, and social media web applica-
tions. Modern web services tend to see dynamic workloads
that exhibit variations at multiple time scales [1], making
them well suited for cloud platforms that support on-demand
allocation of resources to match observed workload dynamics.
One popular approach for handling dynamic web workloads
is to employ elastic scaling, where the resources allocated
to the web service are varied dynamically to match the
workload variations [2]. Many cloud platforms have built-in
support for elastic scaling, making it straightforward for web
applications to employ such functionality [3]–[5]. By its very
nature, elastic scaling methods are designed to overprovision
resources for two reasons. First, since end-users are highly

sensitive to the tail latency of web requests [6], web services
have strict service level objectives (SLOs). Inadequate resource
provisioning can introduce bottlenecks and hurt tail latencies
seen by users.

Second, elastic scaling techniques target handling the peak
workload seen within each provisioning interval to reduce SLO
violations and avoid frequent provisioning decisions. The need
to handle peak workloads and reduce tail latencies require
overprovisioning the resources allocated to an application.
However, resource overprovisioning also increases the energy
footprint of the application. This is because the application
will typically see a lower (“average”) workload intensity
than the provisioned peak, which underutilizes the allocated
resources and wastes power most of the time since the peak
is not often reached. Since computing resources are translated
into power consumption, this peak-provisioning also results
in overprovisioning of power resources. Thus, elastic scaling
methods are known to be SLO-aware but power-unaware.

The growth of web services has led to unabated growth of
cloud platforms over the past decade, which, together with the
networks complementing these infrastructures, now consume
3% of the world’s electricity [7]. As such, since the demand
continues to increase, today’s massive cloud data centers
are raising environmental concerns about their energy and
carbon footprint. Consequently, reducing the power and energy
footprint of cloud workloads has emerged as an important
topic for today’s cloud operations. There has been a wealth
of research on optimizing the power usage of servers and data
centers. This includes exploring various hardware mechanisms
such as running average power limit (RAPL) [8] and dynamic
voltage and frequency scaling (DVFS) [9], as well as software
techniques, such as power-aware scheduling [10] and cluster-
level power management [11]. When used judiciously, such
techniques can reduce the power usage of the underlying
servers [12]. However, recent research has also shown that
aggressive power optimization can increase the risk of higher
tail latency and hurt application performance since power opti-
mization techniques are typically SLO-unaware and workloads

tend to be very sensitive in dynamic changes in power [8].
Thus, in today’s systems, resource and power management

techniques, such as elastic scaling and power capping, operate
independently of one another, leading to sub-optimal power-
performance tradeoffs. To address this issue, we propose
coordinating the elastic scaling and power capping techniques
for web workloads so that the resource and power allocation
decisions are both SLO- and power-aware. We hypothesize
that it is feasible to design appropriate power management in
careful coordination with elastic scaling techniques to achieve
more aggressive power savings without hurting tail latencies
or other SLOs. We design SLO-Power, a resource and power
management system for latency-critical web applications that
can meet tail latency SLOs while also reducing the applica-
tion’s power consumption. A key idea of SLO-Power is that
it is not necessary to run overprovisioned resources at power
levels that target peak performance to meet SLO objectives
and that “slower” power settings can still achieve the desired
performance while reducing the power footprint of the appli-
cation. To sum up, we make the following contributions.

• We showcase the empirical effects of overprovisioning
in traditional auto-scaling designed for web services, fol-
lowed by an exploration of the latency impacts associated
with aggressive power optimization (Section II).

• We introduce SLO-Power’s design that combines elastic
scaling with power capping to optimize performance and
power usage for web applications jointly. Our approach
leverages analytic queuing models with feedback-driven
techniques to jointly allocate resources and power to
web applications in an SLO and power-aware manner
(Section III).

• We implement a prototype of SLO-Power (Section IV)
and evaluate it using realistic applications and workloads.
Our results show that power and resource efficiency can
reach near-optimal levels of 90% while avoiding SLO
violations (Section V).

• In addition, compared to state-of-the-art solutions,
SLO-Power achieves lower P95 latency while utilizing
12% less resources (Section V).

• We open-source SLO-Power for reproducibility1.

II. BACKGROUND AND MOTIVATION

This section provides background on latency-critical web
services, elastic scaling techniques, power capping techniques,
and the motivation of our system.

A. Latency-Critical Web Services

We aim to enhance the Quality-of-Service (QoS) of dis-
tributed web services, particularly those that are sensitive to
latency, within cloud data centers. Research has shown that
achieving low average or median latency alone is insufficient
to ensure user satisfaction. To better improve the user expe-
rience, it is imperative to attain low tail (e.g., 95th or 99th
percentile) latencies [13], [14].

1The code available at: https://github.com/umassos/SLO-Power

One of the primary contributors to undesirable tail latency
is the substantial variability in workloads over time and
across various services. In particular, different web services
typically exhibit varying response times, ranging from a few
milliseconds to several seconds. This divergence is primarily
attributed to variations in the design and development of
these services, resulting in vastly different achievable response
times. Additionally, the multi-tenancy aspects of the cloud
have several impacts on the underlying infrastructure where
workloads run, causing high-performance variability across
applications. This variability across different web services
introduces complexities into the management of distributed
systems, as it becomes challenging to determine the attainable
tail latency for each application precisely and to devise strate-
gies for guaranteeing such latency. As a result, data center
servers typically sacrifice server efficiency (having utilization
of 5 – 30%) to maintain tail-latency targets resulting in wasting
billions of dollars in equipment and terawatt-hours of energy
annually [15].

Additional sources of prolonged tail latency stem from CPU
power-saving mechanisms in cloud data centers. Specifically,
at low levels of resource utilization, power-saving techniques
such as idle power states [16] and frequency scaling can exac-
erbate the tail latency, leading to elevated response time values.
Thus, when the system operates at low utilization levels, a
trade-off arises between power saving and tail latency [17].

B. Elastic Scaling

Unlike average latency, tail latency is more sensitive to
changes in usage load and traffic patterns, system configura-
tions, and resource availability [6]. Because of the sensitivity
of tail latency to application and system factors, it is critical to
design and manage systems for these latency-critical services
efficiently.

Elastic scaling is one of the approaches that dynamically
adjusts software configurations and hardware resource provi-
sioning at runtime to adapt to time-varying conditions such
as fluctuations in service workload [4]. The main goal of
elastic scaling is to prevent both over- and under-provisioning
of computing resources while meeting the QoS requirements
(e.g., tail latency). To achieve that goal, several factors re-
lated to elastic scaling need to be considered. One critical
factor is the elastic scaling policies for adding or removing
resources, which can be conditions based on observed metrics,
such as average CPU utilization, average memory utilization,
workload, or any other custom metrics. Another essential
consideration is the scaling step size, representing the number
of resources configured during each provisioning process to
accommodate workload fluctuations. In general, there are two
types of scaling: horizontal scaling and vertical scaling. For
horizontal scaling, which involves adding more instances or
nodes to a system, the elastic scaler decides the number
of instances of nodes to adjust; for vertical scaling, which
involves adding more resources (i.e., CPU, RAM, storage,
etc.) to an existing service instance or node, the elastic scaler
decides the number of the corresponding resource.

2

0 300 600 900 1200

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

Power Manager
Elastic Scaling

Power manager Elastic scaling
0

10
20
30
40
50
60

Po
w

er
 C

on
su

m
pt

io
n

(W
)

(a) Response time (ms) (b) Power consumption (W)
Fig. 1. The response time and power consumption of power manager (power-
saving mode) and elastic scaling.

C. Power Capping

Power efficiency is a major concern in operating cloud
data centers, which affects the operation costs and profoundly
impacts on the environment [18]. Recent studies show that
the power consumption of data centers will double across
five European countries [19] and effective power management
techniques could yield savings of over 25 billion kWh in the
US [20].

In order to decrease the adverse effects of high power con-
sumption, server power capping emerges as a solution to limit
the power consumption of a server not to exceed a specific
power budget. This solution allows data center operators to
reduce the peak power consumption at the cost of performance
degradation of hosted applications. Traditionally, DVFS was
used to reduce CPU power consumption by decreasing the
voltage or frequency. More recently, RAPL [21] has been
proposed as an alternative that enables direct control over the
power consumption of CPU and memory of a single server.

RAPL is a management interface provided by Intel proces-
sors that combines automatic DVFS and clock throttling. It
improves the plain DVFS in two major aspects. First, it inte-
grates power monitoring and control inside the chip, making
it more accurate and faster to identify and adapt to workload
fluctuations. Second, it combines DVFS and clock throttling,
providing power levels than DVFS alone and, therefore, finer
management granularity [22]. Hence, we employ RAPL to
implement the dynamic power allocation in our SLO-Power.

D. Motivation

The main insight that motivates our work is that the elastic
resource provisioning mechanism prioritizes SLOs, leading to
resource over-provisioning and excessive power consumption.
Conversely, the sophisticated power management in cloud data
centers focuses on power efficiency but lacks SLO awareness.
This dichotomy presents an opportunity to create a system that
is both SLO-aware and power-efficient, ultimately enabling the
cloud service provider to meet SLOs while reducing power
consumption.

Figure 1 plots the response time achieved by two dif-
ferent approaches: power manager and elastic scaling. In
our experiments, we employed the Linux kernel’s CPUFreq
(CPU Frequency scaling) subsystem, enabling dynamic CPU
frequency and voltage adjustments for power management.
Specifically, we set the scaling governor to powersave, forcing
the CPU to operate at its minimum frequency to optimize

power consumption. For the elastic scaling approach, we dy-
namically allocate the number of CPU cores to the web service
based on incoming requests. As illustrated in Figure 1(a), the
elastic scaling approach demonstrates excellent performance,
achieving an average response time of 91ms. In contrast, the
power manager exhibits approximately four times the response
time compared to the elastic scaling approach. This is because
the power manager lowers the CPU speed, and it takes longer
to process the requests. Furthermore, we compare the power
consumption of these two approaches. Figure 1(b) depicts
that the elastic scaling has an average power consumption of
58.1 Watts, which is 32.2% higher than the power manager’s
consumption (43.96 Watts on average). This is because the
elastic scaling tends to provision more CPU cores to meet
the SLOs, resulting in increased power consumption. These
results show that the elastic scaling approach is SLO-aware
but power-unaware, while the power manager is power-aware
but SLO-unaware.
Takeaway. When running web services in the cloud data
center, using either power management or elastic scaling alone
can only achieve one goal of meeting SLOs and saving power.
This motivates us to exploit a hybrid approach that combines
power management with elastic scaling to not only meet
the service performance requirements but also reduce power
consumption.
Challenges. When combining the power manager with elastic
scaling in practice, major challenges are from the interference
between them. 1) conflict objectives: Since the objective of
power manager and elastic scaling have conflict, focusing on
saving power and guaranteeing SLOs, respectively, can lead
to suboptimal resource utilization and potentially affect the
overall system performance when both mechanisms are active.
For example, the power manager might reduce the frequency
and voltage of CPU cores to save power, but elastic scaling
may want to allocate more CPU cores to meet high demand;
2) uncertain CPU performance: The dynamic adjustments
of CPU frequency and voltage can affect the performance
of CPU cores, making it challenging for elastic scaling to
accurately estimate how many cores are needed to maintain
the SLOs. This uncertainty can result in over-provisioning
or under-provisioning of resources; 3) Fluctuating response
time: When elastic scaling adjusts the number of CPU cores,
it may take some time for the system to stabilize. During this
transition period, the CPU frequency and voltage changes may
not align with the newly allocated cores, causing fluctuations
in response time. These response time fluctuations can impact
the QoS, especially for web applications with strict tail latency
constraints.

III. SLO-POWER DESIGN

In this section, we outline the design of SLO-Power and
present the details of key components.

A. System Overview

SLO-Power is an SLO and power-aware elastic scaling
system tailored for latency-sensitive web services in the cloud.

3

Application

Observed Performance

Reactive

Performance
Goal

Watts

C
ores

Workload

SLO-Power

System

Pro-active

Elastic Scaler

Power
Allocator

Fig. 2. SLO-Power system design: dynamic mechanism controls system’s
resources and power through the Elastic Scaler (blue) and the Power Allocator
(green) units.

It incorporates elastic scaling and power capping techniques to
achieve two goals: the first is to ensure performance guarantees
(e.g., tail latencies) to applications; the second is to effectively
reduce server-level power consumption, including CPU cores
and CPU power.

Figure 2 shows the SLO-Power system design. It com-
prises three components: two actuators – the Elastic Scaler
(blue) and the Power Allocator (green) –, along with a Control
Unit (light gray), the entity used to dynamically decide when
to trigger the actuators and which one to use. To address the
challenge of conflict objectives due to interference between
elastic scaling and power management, the Control Unit
always ensures the SLOs are guaranteed first, then adjusts
resource or power allocation to save power. Additionally, the
Control Unit orchestrates the interplay between the Elastic
Scaler and Power Allocator, leveraging local agents to es-
tablish power budgets and allocate CPU cores on individual
servers through RAPL and cgroup [23] quotas. Regarding
the two actuators, the Elastic Scaler’s responsibility lies in
determining the number of cores for the application based
on its workload. It leverages vertical scaling to dynamically
fine-tune resource allocation, subsequently impacting perfor-
mance, as measured by response times and resource utilization.
Meanwhile, the Power Allocator allocates the necessary power
by considering the current power consumption and target
SLOs. Notably, to avoid the uncertainty in CPU performance
and fluctuations in response times caused by degraded power
levels, the Power Allocator adjusts the power budget accord-
ingly when the number of cores is changed. In addition,
in SLO-Power, the Power Allocator is designed to operate
continuously, while the Elastic Scaler is invoked when further
enhancements in response times cannot be achieved with
power allocation and the existing number of cores.

B. Control Unit

In our SLO-Power, the Control Unit is designed to decide
when to trigger the resource and power allocation based on
observed metrics. Once allocation decisions are made by
Elastic Scaler or Power Allocator, it is also responsible for
enforcing the resource and power changes to the system via
cgroup quota and RAPL.

Figure 3 shows how the Control Unit selects the actua-
tors. By observing the real-time response times (i.e., 95th
percentile latency) of the web service, it compares it with a
predefined threshold and makes the scale-up/down decisions.

Response
Time

Yes

NoSLO
Violation

No

YesPower
Limit

Increment
Power

Elastic
Scaler [+]

Sustained
Performance

No
Elastic

Scaler [–]

Yes

Decrease
Power

Input Action Condition

Labels

Fig. 3. SLO-Power resource and power allocation flow.

If the response time is above the threshold, the scale-up action
on power and/or resources is needed. Next, the Control Unit
checks if the current allocated power is at maximum levels of
the given number of cores. If yes, it indicates only a change in
resource allocation is possible to mitigate the SLO violation.
In that case, the Elastic Scaler is triggered, where a scale-up
decision is taken; otherwise, the Power Allocator is triggered
to allocate more power immediately. In our SLO-Power, the
threshold for SLO is defined on a guarded response time using
parameter α, which is proportional to the target response time
T . If the observed response time is above the guarded response
time, denoted as latency > α · T , it triggers the scale-up
actions. Additionally, to avoid SLO violations, the Control
Unit also triggers Elastic Scaler to proactively allocate more
resources when the resource utilization is above a user-defined
threshold β ∈ (0, 1).

Similarly, when sustainable performance levels are main-
tained for a user-defined duration D, during which both the
observed response time and resource utilization are under the
defined thresholds, the Control Unit triggers the Elastic Scaler
to scale down the number of cores for resource savings and
power conservation. To save more power, during the duration
of D, the Control Unit triggers the Power allocator to decrease
the power budget consecutively.

To summarize, the Control Unit makes the decision based
on the observed response times, resource utilization, and
power consumption, following the principles of fast reaction
to SLO violations and slow reaction to save power, and power
adjustment prioritizes resource changes.

C. Elastic Scaler

When the Elastic Scaler is selected by the Control Unit,
it is required to adjust the resources allocated to the server
to accommodate the SLOs. To achieve this, an appropriate
amount of resources needs to be decided based on the amount
of time resources take to process requests. A well-established
technique for doing that involves leveraging queueing theory
to model the processing of web applications [24]–[27]. This
approach treats an application as a logical server encapsulated
within a container or virtual machine (VM) and assigns a
specific resource capacity to it. Depending on the resource

4

management configurations, this provisioning may involve
portions of CPU cores or even the dynamic scaling of multiple
cores.

We design our Elastic Scaler as an M/G/k/PS system,
where the use of Processor Sharing (PS) queueing policy stems
from our assumption that operating systems (OS) employ
traditional CPU time-sharing methods to process requests
within the server. Within this model, we utilize the following
closed-form equation to estimate the expected response time,
based on [28]. Let E[R] denote the expected response time.
Then,

E[R] =
c

λ
· ρ

1− ρ
=

c

cµ− λ
, (1)

where c is the number of allocated cores, λ and µ are the
request arrival rate and service rate at the server, respectively.
Moreover, ρ = λ

cµ is the system utilization and represents the
fraction of time the server is busy. Equation 1 can be used
to compute the resource allocation c based on a given target
response time T , i.e., the SLO. That is, replacing E[R] = T
in Equation 1,

T × (cµ− λ) = c⇔ c =
T × λ

T × µ− 1
(2)

Equation 2 depends primarily on the workload rate and on
the relative capacity that one server core to handle requests.
Finally, a queueing system is considered stable when the
value of ρ < 1. When ρ > 1, it indicates insufficient server
capacity, leading to unbounded or excessively large response
times, violating all pre-defined SLOs, and causing perfor-
mance degradation. This condition, referred to as saturation,
is highly undesirable in distributed systems and should be
prevented [29].

Internally, the Elastic Scaler has proactive and reactive auto-
scalers to allocate resources.
Proactive Auto-scaler. The proactive auto-scaler of
SLO-Power is designed to allocate resources on relatively
large time scales, according to the predicted increase in
workload. This approach leverages a workload estimator to
calculate the expected demand for the upcoming period. By
employing a workload estimator, our predictive component
strives to allocate resources proactively, well before the
demand arises. Our workload estimator is inspired by a
technique that relies on historical workload data to forecast
the demand using the best-fit model.

Since Equation 2 is designed to address the average request
load, its allocations c are optimized for the typical web
application usage and do not consider unexpected workload
spikes, which can inadvertently cause several SLO violations.
Moreover, the proactive auto-scaler may unnecessarily over-
allocate resources as it is based on a worst-case situation. In
response to these limitations in the proactive mechanism, we
propose a reactive auto-scaler integrated with it to quickly
respond and allocate resources as needed.
Reactive Auto-scaler. The reactive auto-scaler functions
within short time scales, typically ranging from seconds to

Algorithm 1: Reactive Auto-scaler
Input: curr cores, curr latency, curr resource, D, δ

1 Initialization: counter ← 0
/* Scale-up */

2 if SLO violation then
3 if power hit limit then
4 curr cores ← ct+1 from Equation 3
5 power allocation(curr cores)

6 else
7 power allocation(curr latency)

/* Scale-down */
8 else
9 counter ← counter + 1

10 if counter ≥ D & (ct+1 - curr cores) ≥ δ then
11 curr cores ← curr cores - δ
12 counter ← 0

13 power allocation(curr resource)

minutes. It is designed to ensure that potential SLO violations
are effectively mitigated and overprovisioned resources are
reduced appropriately for power-saving purposes. Therefore,
it quickly responds to any performance degradation stemming
from underestimations by the proactive auto-scaler, promptly
allocating additional cores to handle the increased workload.
When the performance is sustained, it consecutively reduces
the number of cores, aiming to save power without introducing
SLO violations.

ct+1 =
(α · T)× λt+1

(α · T)× µ− 1
(3)

To decide the number of allocated CPU cores, reactive auto-
scaler uses the same queueing theory model as the proactive
mechanism, but it estimates the workload of the next step
λt+1 online [30] and uses the guarded response time α · T as
average response time, as shown in Equation 3. When SLOs
get violated, the reactive auto-scaler employs the number of
cores ct+1 to adjust the resource allocation, thus mitigating
the SLO violations; whereas for sustained performance, ct+1

is used to limit the resource-saving to avoid severe system
performance degradation. Instead, a constant step size δ is
defined for scaling down the resources.

Furthermore, we summarize the resource allocation of reac-
tive auto-scaler in Algorithm 1. In the algorithm, we can see
that the Power Allocator is constantly involved in adjusting
the power allocation in response to the core changes and the
scale-up/down decisions. In the next section, we will introduce
how the Power Allocator decides the requisite power budgets.

D. Power Allocator

In SLO-Power, we prioritize the Power Allocator (Fig-
ure 2, green) actions over resource allocation ones. This
is because: first, changes in power settings result in less
performance degradation than changes in resource allocation,

5

SLO Agent SLO Agent

–

+

Requests

A
llo

ca
tio

n

Cluster Manager

Power Resources

Node 1 Node n

||

+
Queueing Estimator

SLO-Power

Proxy

R
es

po
ns

e
Ti

m
e

Fig. 4. SLO-Power implementation. Striped squares mean non-allocated
resources.

which may trigger OS resource reconfiguration due to changes
in running threads. Second, power settings take effect over a
millisecond, faster than the resource allocation that requires
several milliseconds to take effect, often due to overheads in
the OS kernel. To react quickly to potential SLO violations, the
Power Allocator operates continuously and in a lower granu-
larity than the Elastic Scaler. Changes in resource allocations
should be preferred only when changes in power are deemed
insufficient or not possible to satisfy web service SLOs. As
such, the Power Allocator is designed as the complimentary
mechanism for elastic scaling.

pt+1 =

pt + η × (ct+1 − ct), if core changes,
pt + |T−Tt

Tt
| × pt, if scale-up,

pt − η
D , if scale-down.

(4)

As shown in Algorithm 1, power allocation is triggered
during core changes (Line 5), scale-up (Line 7), and scale-
down (Line 13) decisions. For core changes, the Power Allo-
cator adjusts the power budget based on the difference of core
number ct+1− ct. For each newly added core, it allocates the
maximum power limit per core η to it, resulting in a power
change of η×(ct+1−ct). For the scale-up decision, the newly
allocated power is proportional to the current power pt, and the
proportionality is determined by the response time Tt deviation
from the target T , denoted as |T−Tt

Tt
|. For the scale-down

decision, the power budget is determined by the duration D
which is used to trigger a core change after consecutive power
reduction. The step size is η

D . Furthermore, we summarize the
power allocation in Equation 4.

IV. IMPLEMENTATION

We implement SLO-Power in a cluster setting, as shown
in Figure 4, where it works as a component of a resource
and cluster manager along with a proxy server – e.g., the

Time50

100

150

200

250

Lo
ad

 (R
PS

)

Time
100

130

160

190

220

250

Lo
ad

 (R
PS

)

(a) Wikipedia trace (b) Azure trace
Fig. 5. Workload traces for evaluation.

load-balancer or DNS server – directing process requests and
which can be used for monitoring, e.g., incoming request rates,
throughput, and response time results. While our SLO and
power-aware elastic scaling is broadly applicable to any cluster
manager, including Kubernetes, our prototype is an extension
of LXD [31]. LXD is a cluster and container management
system built on top of LXC, the Linux container runtime
system. We selected LXD for its versatility and compatibility
with stateful applications, as well as its support for vertical
resource scaling. LXD facilitates the provisioning of complete
operating systems within containers, similar to lightweight
virtual machines. It allows vertical scaling of each container’s
resources through cgroups and incorporates a virtual filesys-
tem (LXCFS) mounted over /proc, ensuring precise resource
accounting, view, and control for each application instance.

In the implementation, our SLO-Power possesses privi-
leged access to the underlying hardware, allowing it control
over the system components regulating the CPU power modes
and the cluster for monitoring and resource allocation. In
particular, the changes in power and resources are realized
through daemon agents running at each host that commits
SLO-Power’s actions, either through cgroup quota or through
the RAPL interface. In total, SLO-Power is implemented in
around 1.1K LoC in Python.

V. EXPERIMENTAL SETUP AND EVALUATION

In this section, we first describe the setup for our ex-
periments, including the real-world application and workload
traces. Next, we evaluate our SLO-Power, together with its
components against performance, power saving, and resource
efficiency, and analyze its sensitivity towards various ad-
justable parameters. Lastly, we compare SLO-Power against
three baseline methods.

A. Experimental Setup

Hardware and Cluster Setup. The experiments are conducted
on a cluster of Dell PowerEdge R440 servers running Ubuntu
20.04 LTS. Each server has a two-socket Intel Xeon Silver
CPU, 8 cores each, 2.10GHz, and 64GB of memory. We
disable hyperthreading and turbo boost since they affect the
comparisons, regardless of the approach used. To emulate a
standard cloud environment and facilitate vertical scalability
across servers, we have opted for the LXD cluster manager.
An application instance is deployed on each physical machine.
Each instance of the tested application is set with all the nec-
essary components, including web servers, database servers,
or microservices.

6

Benchmark Application. We use a latency-sensitive cloud ap-
plication: MediaWiki [32], which hosts a replica of Wikipedia.
MediaWiki is a custom-made, free, and open-source wiki
software platform written in PHP using a traditional LAMP
stack software, running on Linux. Along with the Apache web
server, MediaWiki deploys a MySQL database to host wiki
articles, and a Memcached database that provides low-latency
reads of recently accessed objects in memory. Specifically,
we use the pre-built version of the German Wikipedia, which
comprises a total of 10 GB of content. We use the HA-Proxy
as a load balancer for the application and also use it to collect
application arrival rate and response time data. Requests are
sent through a load-balancer, which exposes an external HTTP
port interconnecting all nodes in the cluster. We set the load
balancer to send requests to the nodes in a round robin way.
Workloads. In our experimental setup, we use two realistic
workloads: Wikipedia [33] and Azure traces2 shown in Fig-
ure 5. To avoid saturating the server, the traces are scaled to our
cluster size. When submitting the cluster to these workloads,
requests are issued using an open-loop system model [34],
which creates requests both pre-determinedly and randomly
by not waiting for the system’s response, i.e., a new request
is generated regardless if a response to previous requests is
received. To emulate users accessing applications, we use the
httpmon tool3, which supports the open-loop system model
behavior. The number of users varies following each workload
trace.
Telemetry. The response time of a request is characterized
as the time length from the moment the request is dispatched
to the moment the request output response is received. Here,
we focus on the processing time of the requests by CPU. We
collect the average and 95th percentile (P95) response times
at every 1 second.

B. Workload Validation and Component Analysis

In our initial sets of experiments, we seek to validate and
demonstrate both the elastic scaler and the power allocator, our
SLO-Power’ components. They are tested both in isolation,
as well as integrated with one another in a unit. For these
experiments, we utilize the Wikipedia and Azure workloads,
as depicted in Figure 5, under a cluster capacity of 48 cores,
with the maximum power allocation for the cluster set 276
Watts, and with a SLO target configuration set at 250ms.
We report the P95, the resource allocation, and utilization. In
addition, we also report the power ratio, which is defined as
the ratio between power consumption over power allocation.
Theoretically, if a power allocation is optimally configured,
the power ratio is near the value of 1.0.
Power Component. The power component strives to slowly
reduce the power cap allocated to the processor, effectively
reducing its processing power and affecting the application’s
overall response time. However, besides mitigating the side-
effects of resource reconfiguration due to core changes –

2https://github.com/Azure/AzurePublicDataset
3https://github.com/cloud-control/httpmon

0
50

100
150
200
250
300

P9
5

(m
s)

P95
SLO

24

32

40

48

C
or

e A
llo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Po
w

er
 O

pt
im

al
ity

R
at

io

Consumption/Allocation
Theoretical Optimal

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96101106
Epoch

0
20
40
60
80

100

C
PU

 u
til

iz
at

io
n

(%
)

measured
estimator

0
50

100
150
200
250
300

P9
5

(m
s)

P95
SLO

24

32

40

48

C
or

e A
llo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Po
w

er
 O

pt
im

al
ity

R
at

io

Consumption/Allocation
Theoretical Optimal

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96101106
Epoch

0
20
40
60
80

100

C
PU

 u
til

iz
at

io
n

(%
)

measured
estimator

(a) Power: 48-cores (b) Elastic

0
50

100
150
200
250
300

P9
5

(m
s)

P95
SLO

24

32

40

48

C
or

e A
llo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Po
w

er
 O

pt
im

al
ity

R
at

io

Consumption/Allocation
Theoretical Optimal

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
Epoch

0
20
40
60
80

100

C
PU

 u
til

iz
at

io
n

(%
)

measured
estimator

0
50

100
150
200
250
300

P9
5

(m
s)

P95
SLO

24

32

40

48

C
or

e A
llo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

Po
w

er
 O

pt
im

al
ity

R
at

io

Consumption/Allocation
Theoretical Optimal

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96101106111
Epoch

0
20
40
60
80

100

C
PU

 u
til

iz
at

io
n

(%
)

measured
estimator

(c) SLO-Power: Wikipedia (d) SLO-Power: Azure
Fig. 6. Power × Elastic × SLO-Power Mechanisms (Wikipedia/Azure):
Power and resource allocations are regulated while controlling latency. Re-
source allocation (2nd subplot) is utilized to control latency (1st subplot),
up until the estimator (lower subplot) detects workload peaks to avoid SLO
violations.

e.g., thread recreations –, the power component allows the
SLO-Power’s control unit to react to SLO violations. Figure
6(a) presents results for the power component analysis. In this
run, the cluster size is set to a maximum of 48 cores. It can
be seen that the power ratio averages 0.91, with 189 Watts
of power consumption and 203 Watts of power allocation.
However, although nearing the theoretical optimal, the power
allocator mechanism incurs 5% SLO violations, negatively
affecting the P95 latency, even though the setting allots the
full cluster size capacity. The reason for these violations is
mainly due to the under-power allocation that the power-saving
technique enforces, resulting in an overall processing power
that is limited and lower than what the application physically
requires (i.e., in terms of compute-power).
Elastic Component. The elastic auto-scaler operates over
a hybrid time scale, using both the proactive and reactive
mechanisms in conjunction. It requires accurate workload
rate estimations of the immediate upcoming time windows
to effectively adjust the resource allocation and avert SLO
violations (Section III). To assess its effectiveness, we subject
SLO-Power to the Wikipedia workload, configuring it not to
use the power allocator component. The elastic component
analysis results are depicted in Figure 6(b). Notably, the
proactive controller consistently optimizes resource availabil-
ity while effectively managing the P95 latency. Resource
allocation exhibits fluctuations of up to 12 cores around
the 35-core average, resulting in an average power usage
of 193 Watts. However, the power ratio is only 70% as no
capping is applied. Interestingly, despite substantial resource

7

45% 55% 65% 75% 85%
CPU Utilization Threshold

90
%

80
%

70
%

SL
O

-G
ua

rd

90
95
100
105
110
115
120
125
130

P9
5

(m
s)

45% 55% 65% 75% 85%
CPU Utilization Threshold

90
%

80
%

70
%

SL
O

-G
ua

rd

15

20

25

30

35

40

45

Re
so

ur
ce

s (
co

re
s)

(a) Latency (b) Resource allocation
Fig. 7. SLO-Power Sensitivity Analysis: P95 latency decreases with stricter
power-resource parameters, and more resources are allocated with smaller
CPU utilization thresholds.

reduction, no P95 SLO violations are observed, ensuring the
latency remains within the 250ms SLO target and achieves
96.64ms. This success is primarily attributed to the workload
estimator (lower plot), which accurately identifies peaks in
the request rate, facilitating the timely scaling of resources by
the proactive mechanism. Despite its efficiency in resource
management, the elastic mechanism attains only 39% of
overall CPU utilization.
SLO-Power. Finally, in this experiment, we integrate both
the Elastic and the Power mechanisms in one component. It
is used as a heuristic to jointly combine both resource and
power optimizations (Figure 3 and Algorithm 1). We also
test it under two workloads: Wikipedia and Azure. Figures
6(c) and (d) depict results for SLO-Power under both work-
loads. Overall, in both cases, SLO-Power steers the P95
latency towards the SLO target due to both accurate resource
estimations and power deallocation: our workload estimator
achieves 0.16 and 0.05 normalized root-mean-square error
(NRMSE) respectively for each workload. This results in a
power-efficiency ratio of 86% and 90%, respectively, only 1
to 4% lower than the power mechanism. In addition, it has zero
SLO violations, achieving a 117ms P95 latency, well below the
SLO target. SLO-Power provides an effective mechanism to
apply power-saving mechanisms jointly with resource scaling
while respecting performance targets.

Key Takeaway. While achieving near-optimal power ef-
ficiency, power-capping mechanisms inadvertently degrade
application performance. On the other hand, resource scal-
ing achieves good performance but falls short on power
efficiency. Jointly utilizing both mechanisms combines 86%
power efficiency while meeting SLO targets.

C. Sensitivity Analysis

Next, we analyze how the SLO-guard and CPU resource
utilization threshold defined in the Control Unit affects the
performance of SLO-Power. We analyze the same influences
when utilizing the SLO-safeguard mechanism by varying the
SLO-Guard from 70 to 90%. In addition, we scrutinize the
impacts on latency and resource efficiency while varying the
CPU threshold from 45% to 85%.
Results. Figures 7 represent the overall results of our analysis.
Figure 7(a) shows that lower CPU utilization thresholds yield

lower P95 latencies. This is due to the higher sensitivity to
peaks in resource usage, triggering the autoscaler to allocate
more cores, which can be seen in Figure 7(b). It can also be
seen that the effects of SLO-Guard are less noticeable with
lower CPU thresholds, indicating a higher sensitivity of the
workload on the CPU utilization. However, when the CPU
threshold is high, like 85%, a tighter SLO-Guard results in a
higher P95, which tends to have less resource allocation and
less power consumption.

Key Takeaway. Indiscriminately allocating more resources
may not necessarily enhance workload performance. Work-
loads tend to respond to changes in resource utilization,
highlighting the need for meticulous configuration of elastic
systems.

D. Different SLO Targets Comparisons

Here, we aim to evaluate how SLO-Power compares
against modern auto-scalers under different performance tar-
gets. Based on service level agreements commonly used by
cloud providers [35], we define three levels of SLOs: (i) strict,
(ii) medium, and (iii) relax. The strict level has 150ms as
the target and generally utilizes more power and compute
resources to satisfy targets. In comparison, both medium
(200ms target) and relax (250ms target) levels consume less
power and compute. Unlike SLO-Power and Pegasus, the
K8S and Power Manager strategies do not use SLOs. Thus, we
use resource and power allocation parameters that reflect the
target levels when submitting them to the Wikipedia workload.
We report the P95 latency, power consumption and ratio, and
resource allocation and efficiency for all experiments. Below,
we detail the state-of-the-art baselines we compare against
SLO-Power.
K8S Autoscaler. The K8S auto-scaler is based on the average
CPU utilization across all cluster instances and allocates
resources based on a given threshold that is application-
dependant [36]. When autoscaling, it does not consider the
response time being experienced by the application. As such,
it is a SLO-unaware policy.
Power manager. The Power manager policy uses the pre-set
best DVFS configuration to save power, affecting the applica-
tion performance. It is a SLO-unaware approach that reduces
power consumption based on the performance counters of the
underlying hardware. We set different power caps according
to following the target SLOs.
Pegasus. Pegasus [37] is a system that considers the SLO
target to provision power resources to the application. It uses
a controller alternating among several pre-defined heuristics,
e.g., adjusting power to the maximum if the response time
exceeds a certain threshold. Due to its dynamic and model-
free nature, Pegasus can quickly react to changes in workload
and handle SLO violations. We use the same SLO targets when
comparing it against SLO-Power.
Results. Figures 8 presents the latency, power, and resource
utilization results for all baselines. As shown in Figure 8(a),
the higher availability of resources across all policies enables

8

Strict Medium Relax
Target SLO

102

103

R
es

po
ns

e
Ti

m
e

(lo
g

sc
al

e) Pegasus
SLO-Power
K8s
Power Manager

Pegasus SLO-Power K8s Power Manager
Methods

0

50

100

150

200

Po
w

er
 C

on
su

m
pt

io
n

(W
)

Strict Medium Relax
0.0

0.2

0.4

0.6

0.8

1.0

Pegasus
SLO-Power
K8s
Power Manager Pegasus SLO-Power K8s Power Manager

Methods

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 C
or

e A
llo

ca
tio

n
(%

)

(a) P95 response time (b) Power consumption (c) Power efficiency (d) Resource usage
Fig. 8. Evaluating SLO-Power with different target 95th percentile response times.

very low levels of P95 latency. The exception is for the
power manager: due to the DVFS configuration, the power
manager policy reduces too much of the CPU frequency,
severely impacting the latency levels. As the SLO targets
reduce, the impacts of using the workload trend to make deci-
sions are more noticeable, negatively affecting all baselines
but SLO-Power. Since Pegasus does not use a predictive
mechanism, its reaction features do not timely control the
latency.

Figure 8(b) shows the dynamic power consumption remains
constant across all baselines, which is primarily influenced by
resource utilization, which in turn, depends on the application
runtime cycles. Since the application is the same across runs,
power remains unchanged, with the power manager achiev-
ing lower consumption due to its CPU frequency manage-
ment. Figure 8(c) shows that despite achieving 10% higher
power efficiency ratios, Pegasus uses 12% more resources
than SLO-Power (Figure 8(d)). Overall, Pegasus achieves
up to 5% SLO violations, while SLO-Power achieves only
2% violations, even with stricter targets. This is because
of SLO-Power’s resource efficiency, which better controls
both the P95 and the latency variability, resulting in more
predictable performance.

Key Takeaway. While SLO and power-aware mechanisms
achieve both high efficiency and performance, they come
at increased resource consumption of at least 10%. Power-
elastic mechanisms that incorporate resource-awareness
demonstrate a 2× reduction in SLO violations while re-
ducing resource usage by 12%.

VI. RELATED WORK

In the literature, there is a wealth of research on elastic
scaling and power management. In this section, we discuss the
most related pieces of work and present the key differences
involved in the design of our system.

Substantial prior research has concentrated on elastic re-
source provisioning [3], [5], [38]–[42], with different tech-
niques, such as queueing theory, machine learning, and heuris-
tics. Similar to our analytic queueing model, Sharma et al.
employ a tandem M/G/1-PS model to characterize multi-tier
applications, estimating response time distribution. These dis-
tributions are then utilized by a horizontal scaler to determine
the number of servers required for provisioning [39]. However,
our SLO-Power applies the queueing model to reactive auto-

scaler as well to adapt to the spikes in workloads. Furthermore,
hybrid auto-scalers combining proactive and reactive scalers
have also been proposed. Ahmed Ali-Eldin et al. [24] propose
using reactive scaling for scale-up and proactive scaling for
scale-down. However, these approaches fail to integrate power
management to save power while meeting tail latencies as our
SLO-Power does.

Regarding power-performance management, various work
have been proposed [8]–[12], [43]–[46]. Eric Rutten et al.
benchmark the application offline and subsequently derive
a system model. They leverage this model to develop a
Proportional-Integral (PI) controller for making power al-
location decisions [43]. Similarly, DDPC [8] employs a
Proportional-Integral (PI) power controller to capture the ap-
plication’s power-latency trade-offs. However, this approach
requires intensive profiling to get a power-performance model,
which might fail to adapt to different workloads well and is
designed to guarantee the average response time. However,
our SLO-Power is model-free and can meet tail latency
constraints.

VII. CONCLUSION

In this paper, we propose an SLO and power-aware elastic
scaling system for online web services, SLO-Power. Our
system is designed to reduce server-level power consumption
while adhering to the application SLO targets – e.g., 95th
percentile latency (P95). To achieve this goal, SLO-Power
incorporates the elastic resource scaling and power capping
techniques that dynamically allocate CPU cores and power
caps in response to workload fluctuations and observed ap-
plication response times. In particular, we combine analytical
queueing models, workload estimators, and feedback-driven
techniques for joint allocation decisions, with careful attention
to pro-active allocations to address the challenges coming
from the interference between them. At last, we prototype
our system and evaluate it under real-world workload and
applications, against state-of-the-art auto-scalers. Our findings
indicate that SLO-Power can achieve power and resource
efficiency close to optimal levels, reaching up to 90%, besides
avoiding SLO violations. Moreover, compared to state-of-the-
art solutions, SLO-Power attains lower, controllable P95
latency, all while utilizing 12% fewer resources. We open
source SLO-Power4. One limitation of SLO-Power is that

4https://github.com/umassos/SLO-Power

9

it uses an Intel-specific hardware actuator, RAPL, to manage
power allocation. In the case of servers with heterogeneity,
relying on RAPL might limit the applicability of our power
controller component. For this reason, in the future, we plan to
develop hardware-independent software-based techniques for
power management.

ACKNOWLEDGMENT

This research has been supported by the Republic of
Türkiye Ministry of National Education YLSY program and
NSF grants 2211888, 2213636, 2105494, and 2021693. We
appreciate anonymous reviewers for their feedback.

REFERENCES

[1] A. Kumar, I. Narayanan, T. Zhu, and A. Sivasubramaniam, “The fast
and the frugal: Tail latency aware provisioning for coping with load
variations,” in Proceedings of The Web Conference 2020, 2020, pp. 314–
326.

[2] M. Eriksen, K. Veeraraghavan, Y. Abdulghani, A. Birchall, P.-Y. Chou,
R. Cornew, A. Kabiljo, M. Lieuw, J. Meza, S. Michelson et al.,
“Global capacity management with flux,” in 17th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 23), 2023, pp.
589–606.

[3] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand et al., “Autopilot: work-
load autoscaling at google,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–16.

[4] H. Qian, Q. Wen, L. Sun, J. Gu, Q. Niu, and Z. Tang, “Robustscaler:
Qos-aware autoscaling for complex workloads,” in 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 2022,
pp. 2762–2775.

[5] Z. Wang, S. Zhu, J. Li, W. Jiang, K. Ramakrishnan, Y. Zheng, M. Yan,
X. Zhang, and A. X. Liu, “Deepscaling: microservices autoscaling for
stable cpu utilization in large scale cloud systems,” in Proceedings of
the 13th Symposium on Cloud Computing, 2022, pp. 16–30.

[6] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the
ACM, 2013.

[7] V. Rozite, E. Bertoli, and B. Reidenbach, “Data centres and data trans-
mission networks,” IEA, 2023. [Online]. Available: https://www.iea.org/
energy-system/buildings/data-centres-and-data-transmission-networks

[8] M. Savasci, A. Ali-Eldin, J. Eker, A. Robertsson, and P. Shenoy, “Ddpc:
Automated data-driven power-performance controller design on-the-fly
for latency-sensitive web services,” in Proceedings of the ACM Web
Conference 2023, 2023, pp. 3067–3076.

[9] L. Zhou, L. N. Bhuyan, and K. Ramakrishnan, “Gemini: Learning
to manage cpu power for latency-critical search engines,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2020, pp. 637–349.

[10] A. G. Kumbhare, R. Azimi, I. Manousakis, A. Bonde, F. Frujeri,
N. Mahalingam, P. A. Misra, S. A. Javadi, B. Schroeder, M. Fontoura
et al., “{Prediction-Based} power oversubscription in cloud platforms,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021,
pp. 473–487.

[11] P. Patel, E. Choukse, C. Zhang, Í. Goiri, B. Warrier, N. Mahalingam, and
R. Bianchini, “Polca: Power oversubscription in llm cloud providers,”
arXiv preprint arXiv:2308.12908, 2023.

[12] S. Li, X. Wang, F. Kalim, X. Zhang, S. A. Jyothi, K. Grover,
V. Kontorinis, N. Narodytska, O. Legunsen, S. Kodakara et al.,
“Thunderbolt:{Throughput-Optimized},{Quality-of-Service-Aware}
power capping at scale,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 1241–1255.

[13] M. Brooker, “Tail latency might matter more than you think,” https:
//brooker.co.za/blog/2021/04/19/latency.html, accessed: 2023-10-04.

[14] C. Delimitrou and C. Kozyrakis, “Amdahl’s law for tail latency,”
Communications of the ACM, 2018.

[15] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalu-
ation methodology for latency-critical applications,” in 2016 IEEE In-
ternational Symposium on Workload Characterization (IISWC). IEEE,
2016, pp. 1–10.

[16] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminat-
ing server idle power,” ACM SIGARCH Computer Architecture News,
vol. 37, no. 1, pp. 205–216, 2009.

[17] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the
tail: Hardware, os, and application-level sources of tail latency,” in
Proceedings of the ACM Symposium on Cloud Computing, 2014.

[18] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan, and C. Kozyrakis,
“Power management of datacenter workloads using per-core power
gating,” IEEE Computer Architecture Letters, vol. 8, no. 2, pp. 48–51,
2009.

[19] BloombergNEF, “Data centers set to double their power demand
in europe, could play critical role in enabling more renewable
energy,” https://about.bnef.com/blog/data-centers-set-to-double-their-
power-demand-in-europe-could-play-critical-role-in-enabling-more-
renewable-energy, accessed: 2023-10-04.

[20] A. Shehabi, S. J. Smith, E. Masanet, and J. Koomey, “Data center growth
in the united states: decoupling the demand for services from electricity
use,” Environmental Research Letters, 2018.

[21] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “Rapl:
Memory power estimation and capping,” in Proceedings of the 16th
ACM/IEEE international symposium on Low power electronics and
design, 2010, pp. 189–194.

[22] H. Zhang and H. Hoffmann, “Maximizing performance under a power
cap: A comparison of hardware, software, and hybrid techniques,” ACM
SIGPLAN Notices, vol. 51, no. 4, pp. 545–559, 2016.

[23] T. L. K. documentation, “Control groups,” https://docs.kernel.org/
admin-guide/cgroup-v1/cgroups.html, accessed: 2024-2-27.

[24] A. Ali-Eldin, J. Tordsson, and E. Elmroth, “An adaptive hybrid elasticity
controller for cloud infrastructures,” in 2012 IEEE Network Operations
and Management Symposium. IEEE, 2012, pp. 204–212.

[25] A. Bauer, N. Herbst, S. Spinner, A. Ali-Eldin, and S. Kounev,
“Chameleon: A hybrid, proactive auto-scaling mechanism on a level-
playing field,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 800–813, 2018.

[26] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood, “Agile
dynamic provisioning of multi-tier internet applications,” ACM Trans-
actions on Autonomous and Adaptive Systems (TAAS), 2008.

[27] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic
model for dynamic resource provisioning of multi-tier applications,” in
Fourth International Conference on Autonomic Computing (ICAC’07).
IEEE, 2007, pp. 27–27.

[28] Q. Liang, W. A. Hanafy, A. Ali-Eldin, and P. Shenoy, “Model-driven
cluster resource management for ai workloads in edge clouds,” ACM
Transactions on Autonomous and Adaptive Systems, vol. 18, no. 1, pp.
1–26, 2023.

[29] N. Bronson, A. Aghayev, A. Charapko, and T. Zhu, “Metastable Failures
in Distributed Systems,” in Proceedings of the Workshop on Hot Topics
in Operating Systems, 2021, pp. 221–227.

[30] R. T. Birge and J. Weinberg, “Least-squares’ fitting of data by means of
polynomials,” Reviews of Modern Physics, vol. 19, no. 4, p. 298, 1947.

[31] T. L. K. documentation, “Lxd,” https://canonical.com/lxd, accessed:
2024-2-27.

[32] “Mediawiki,” https://www.mediawiki.org/wiki/MediaWiki, accessed:
2023-8-19.

[33] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, vol. 53, no. 11, pp.
1830–1845, 2009.

[34] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open versus closed:
A cautionary tale,” in 3rd Symposium on Networked Systems Design &
Implementation (NSDI 06). USENIX Association, 2006.

[35] AWS, “Aws service level agreements (slas),” https://aws.amazon.com/
legal/service-level-agreements/, accessed: 2023-12-14.

[36] Kubernetes, “Kubernetes horizontal pod autoscaling,” https:
//kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/,
accessed: 2023-12-14.

[37] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis,
“Towards energy proportionality for large-scale latency-critical work-
loads,” ACM SIGARCH Computer Architecture News, vol. 42, no. 3, pp.
301–312, 2014.

[38] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic pro-
visioning of multi-tier internet applications,” in Second International
Conference on Autonomic Computing (ICAC’05). IEEE, 2005.

10

[39] U. Sharma, P. Shenoy, and D. F. Towsley, “Provisioning multi-tier cloud
applications using statistical bounds on sojourn time,” in Proceedings of
the 9th international conference on Autonomic computing, 2012.

[40] E. B. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth,
“Towards faster response time models for vertical elasticity,” in 2014
ieee/acm 7th international conference on utility and cloud computing.
IEEE, 2014, pp. 560–565.

[41] M. Wajahat, A. Gandhi, A. Karve, and A. Kochut, “Using machine
learning for black-box autoscaling,” in 2016 Seventh International Green
and Sustainable Computing Conference (IGSC). IEEE, 2016, pp. 1–8.

[42] P. Singh, A. Kaur, P. Gupta, S. S. Gill, and K. Jyoti, “Rhas: robust
hybrid auto-scaling for web applications in cloud computing,” Cluster
Computing, vol. 24, no. 2, pp. 717–737, 2021.

[43] E. Rutten, S. Cerf, R. Bleuse, V. Reis, and S. Perarnau, “Sustaining
performance while reducing energy consumption: A control theory
approach,” arXiv preprint arXiv:2107.02426, 2021.

[44] G. Chen and X. Wang, “Performance optimization of machine learn-
ing inference under latency and server power constraints,” in 2022
IEEE 42nd International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2022.

[45] W. Tang, Y. Ke, S. Fu, H. Jiang, J. Wu, Q. Peng, and F. Gao, “Demeter:
Qos-aware cpu scheduling to reduce power consumption of multiple
black-box workloads,” in Proceedings of the 13th Symposium on Cloud
Computing, 2022.

[46] K. Kaffes, D. Sbirlea, Y. Lin, D. Lo, and C. Kozyrakis, “Leveraging
application classes to save power in highly-utilized data centers,” in
Proceedings of the 11th ACM Symposium on Cloud Computing, 2020.

[47] M. Savasci, “Slo-power,” Mar. 2024. [Online]. Available: https:
//zenodo.org/doi/10.5281/zenodo.10672465

APPENDIX A
ARTIFACT DESCRIPTION

Abstract—This artifact section presents the evaluation of the
SLO-Power. The SLO-Power, implemented in Python over 1.1K
LoC, coordinates the resource and power scaling techniques to
achieve power savings while adhering to service level objectives
(SLOs), such as tail latency constraints. Our findings indicate that
SLO-Power achieves exceptional power and resource efficiency.

A. Description

This artifact points to source code files written in Python and
accompanying documentation. It provides brief information
about the designed system dependencies. More details are
provided on the GitHub page given in the following section.

1) How to access: The code is available at https://
github.com/umassos/SLO-Power. We assigned it a persistent
identifier by linking it to Zenodo [47].

2) Hardware: The experiments are conducted on a cluster
of Dell PowerEdge R440 servers running Ubuntu 20.04 LTS.
Each server has a two-socket Intel Xeon Silver 4110 CPU, 8
cores each, 2.10GHz, and 64GB of memory. We disable hy-
perthreading and turbo boost. Moreover, we set OS DBPM as
a CPU power management system and balanced performance
as an energy-efficient policy from the BIOS settings.

3) Application: We use a latency-sensitive cloud applica-
tion: MediaWiki5. For easy deployment, we created the LXC
image of the application. The deployment details are given on
the GitHub page.

5https://www.mediawiki.org/wiki/MediaWiki

B. Installation

SLO-Power requires the following software packages to
be able to deploy.

• Ubuntu 20.04 LTS OS
• Python 3.8.10
• LXD 5.19 & LXC 5.19
• cgroups v1
• HAProxy load balancer
• httpmon workload generator
SLO-Power requires the following Python modules:
• grpcio
• numpy
• rapl
We generated requirement.txt for required Python modules

except rapl module because it is an external module obtained
from here. The details on installing the rapl module are
provided on our GitHub page.

Please note that RAPL, introduced in the Sandy Bridge
architecture, is Intel technology. Therefore, you need an Intel
CPU that has a RAPL interface to run SLO-Power without
any modification. If you have an AMD CPU, it should be
noted that AMD has its own technology, called TDP Power
Cap. It was introduced in the Bulldozer architecture for power
capping. Therefore, you should check if your AMD CPU
has that feature. In case it has, as soon as the power agent
component of SLO-Power is updated to make it compatible
with the AMD CPU, SLO-Power can be used. This operation
should be straightforward.

We suggest readers create a Python virtual environment and
install modules inside of this virtual environment.

C. SLO-Power Code Structure

SLO-Power is composed of two parts: cluster manager
and SLO agent. The cluster manager makes the power alloca-
tion and elastic core scaling decisions, while the SLO agent
enforces incoming power allocation and core scaling decisions
on its running machines. The cluster manager and the SLO
agent communicate via RPC calls. For this purpose, we use the
gRPC framework. We also developed a service that provides
an interface for CPU power measurement over the Intel
RAPL interface and CPU utilization. All these components
are provided in our GitHub repo.

D. Experiment workflow

To emulate a standard cloud environment and facilitate verti-
cal scalability across servers, we have opted for the LXD6 clus-
ter manager. LXD is a system container manager commonly
used in various use cases such as application development,
testing, deployment, and cloud computing. It is a lightweight,
open-source solution for running and managing Linux contain-
ers, providing a high isolation level similar to virtual machines
but with lower overhead and greater efficiency. An application
instance is deployed on each physical machine. Each instance
of the tested application has all the necessary components,

6https://canonical.com/lxd

11

including web servers, database servers, or microservices. We
use a latency-sensitive cloud application: MediaWiki. which
hosts a replica of German Wikipedia. User requests to the
application are sent through a HAProxy load-balancer, which
exposes an external HTTP port interconnecting all nodes in
the cluster. To emulate users accessing applications, we use
the httmon tool7, which supports the open-loop system model
behavior.

E. Evaluation and expected results
In our evaluation, we use two realistic workloads:

Wikipedia [33] and Azure traces8. These traces are provided
on the GitHub page. The traces are scaled to our cluster size
to avoid saturating the server. When submitting the cluster to

these workloads, requests are issued using an open-loop sys-
tem model [34], which creates requests both pre-determinedly
and randomly by not waiting for the system’s response, i.e., a
new request is generated regardless if a response to previous
requests is received.

F. Experiment customization

We experimented SLO-Power with two different real
workload traces. We believe that SLO-Power can be ex-
perimented with more workload traces. In addition to this,
SLO-Power can easily adapt to different cluster sizes.

7https://github.com/cloud-control/httpmon
8https://github.com/Azure/AzurePublicDataset

12

